Paper Title :Automated Waste Segregation System using Trained Optical and Material Sensors with User Communication Capabilities
Author :Neil Laurence Z. Ortaliz, Alfed Edrian D. Ama, Albert Anthony O. Fuentes, Josh Arvin G. Jurado, Engr. Myles Joshua Toledo Tan
Article Citation :Neil Laurence Z. Ortaliz ,Alfed Edrian D. Ama ,Albert Anthony O. Fuentes ,Josh Arvin G. Jurado ,Engr. Myles Joshua Toledo Tan ,
(2020 ) " Automated Waste Segregation System using Trained Optical and Material Sensors with User Communication Capabilities " ,
International Journal of Electrical, Electronics and Data Communication (IJEEDC) ,
pp. 23-26,
Volume-8,Issue-8
Abstract : As the world’s population grows, so does the amount of generated waste which continues to be an issue being
faced around the world. Waste segregation is an effective way to lessen waste that could go to landfills while increasing the
amount of recyclable materials. In this paper, a segregation system was developed using trained optical and material sensors
to categorize the waste, while a mechanical segregating system was introduced. Aside from this, a web application where
users will be able to view data gathered and will be able to validate the system’s categorization of wastes. By using this
system, waste may be categorized into four: metal cans, plastic bottles, paper and other wastes. A model was trained using a
dataset to recognize these four types of waste, while an inductive sensor aids in recognizing the material. The mechanical
system consists of servo motors that rotate flaps which allow the trash to fall into the target receptacle. The current model
has an accuracy of 83.54% but can be improved using the web application, where users will validate images captured by the
system to improve the machine learning model.
Keywords - Solid Waste Trash, Segregation, Machine Learning, Neural Networks.
Type : Research paper
Published : Volume-8,Issue-8
DOIONLINE NO - IJEEDC-IRAJ-DOIONLINE-17426
View Here
Copyright: © Institute of Research and Journals
|
 |
| |
 |
PDF |
| |
Viewed - 101 |
| |
Published on 2020-10-23 |
|